Solution to Problem #70

Ignacio Larrosa Caņestro of A Coruņa (Spain), Vince Lynch of Doncaster (UK), Paul Lee of Moreno Valley CA, Paul Botham of Ipswich (UK), and Francesc Suņol of Barcelona (Spain) found the volume of the solid to be 4π/35 = .359039...

Ignacio Larrosa Caņestro found the surface area to be 17π/12 = 4.450589... Here is his solution:

i) Volume

V = 8*Int(1, (x, y, z), A)

where A = {(x, y, z) in R^3 | 0 ≤ x^(2/3) + y^(2/3) + z^(2/3) ≤ 1}

Let

(r, s, t) = (x^(2/3), y^(2/3), z^(2/3))

So (x, y, z) = (r^(3/2), s^(3/2), t^(3/2))

The Jacobian is (27/8)(r*s*t)^(1/2), and

V = 8*(27/8)*Int(r^(1/2)*s^(1/2)*t^(1/2), (r, s, t), T)

where T = {(r, s, t) in R^3 | 0 ≤ r, s, t ≤ 1}

We have

V = 27*Int(Int(Int(r^(1/2)*s^(1/2)*t^(1/2), t, 0, 1- r - s), s, 0, 1 - r),
r, 0, 1)

  = 27*Int(r^(1/2)*Int(s^(1/2)*Int(t^(1/2), t, 0, 1- r - s), s, 0, 1 - r),
r, 0, 1)

  = 18*Int(r^(1/2)*Int(s^(1/2)*(1 - r - s)^(3/2), s, 0, 1 - r), r, 0, 1)

========================
For I = Int(s^(1/2)*(1 - r - s)^(3/2), s, 0, 1 - r), we have

I = Int(s^2*((1 - r - s)/s)^(3/2), s, 0, 1 - r)

Let

u^2 = (1 - r)/s - 1  ===> s = (1 - r)/(1 + u^2)

ds = -2u(1 - r)/(1 + u^2)^2

I = -2*(1 - r)^3*Int(u^4/(1+u^2)^4, u, inf, 0)

  = 2*(1 - r)^3*Int(u^4/(1+u^2)^4, u, 0, inf)

Let  u = tan(v), du = (1/cos^2(v))dv,

I = 2*(1 - r)^3*Int(cos^2(v)*sin^4(v), v, 0, pi/2)  (int. by parts)

 = 2*(1 - r)^3*(1/5)*Int(sin^6(v), v, 0, pi/2)

 = 2*(1 - r)^3*(1/5)*(5/6)*Int(sin^4(v), v, 0, pi/2)

 = 2*(1 - r)^3*(1/5)*(5/6)*(3/4)*Int(sin^2(v), v, 0, pi/2)

 = 2*(1 - r)^3*(1/5)*(5/6)*(3/4)*(1/2)*Int(1, v, 0, pi/2)

 = 2*(1 - r)^3*(1/5)*(5/6)*(3/4)*(1/2)*(pi/2) = (1 - r)^3*pi/16

========================

V  = (9pi/8)*Int(r^(1/2)*(1 - r)^3, r, 0, 1) = 4pi/35 ~= 0.359039...

(Incidentally, the volume in the positive octant is V/8 = pi/70,
coincidence with the problem number?)

The result can be obtained more quickly using Eulerian functions Beta and
Gamma and/or Dirichlet formula.

ii)

The surface equation is

z = (1 - x^(2/3) - y^(2/3))^3/2

Then

S = 8*Int((1 + (dz/dx)^2 + (dz/dy)^2)^(1/2), (x, y), A)

 =  8*Int(((x^(2/3) + y^(2/3) - x^(4/3) - x^(2/3)*y^(2/3) -
y^(4/3))/(x^(2/3)*y^(2/3)))^(1/2), (x, y), A)

where A = {(x, y) in R^2 | 0 ≤ x^(2/3) + y^(2/3) ≤ 1}

Let (r, s) = (x^(2/3), y^(2/3))


So (x, y) = (r^(3/2), s^(3/2))

The Jacobian is (9/4)(r*s)^(1/2), and

S = 8*(9/4)*Int(Int((r + s - r^2 - r*s - s^2)^(1/2), (r, s), T)

where T = {(r, s) in R^2 | 0 ≤ r, st ≤ 1}. We have

S = 18*Int(Int((r(1 - r) + s(1 - r) - s^2), s, 0, 1 - r), s, 0, 1)

 = 18*Int((1 - r)(3r + 1)*atan((r(1 - r))^(1/2)/(2r))/4 + (1 - r)(r(1 -
r))^(1/2)/2, r, 0, 1)

 = 17pi/12  ~= 4.450589592

Back to the Archives
Back to the Math Department Homepage.